

Welcome to FACPL’s documentation!

Contents:

	FACPL at a glance
	FACPL Evaluation Process

	Getting started
	Eclipse installation

	Java Library

	FACPL Java Code Generator and Parsers

	Usage guide
	Setting Up a FACPL Project

	Policy Specification

	Policy Evaluation

	Policy Analysis

	Plugin Commands and Facets

	FAQ

Note

For any problem or questions, add an issue to the GitHub repository [https://github.com/andreamargheri/FACPL/issues] or mail to margheri.andrea@gmail.com.

FACPL at a glance

FACPL: Specifying, Analysing and Enforcing Access Control Policies

The FACPL language is a formal, easy-to-use language that permits
specifying access control policies. FACPL is the basis of a feasible and
effective approach for defining access control systems. Various
applications have been proposed, varying from e-Health to autonomic
computing domains.

FACPL is equipped with a powerful Integrated Development Environment
(IDE) and a Java library, supporting access control system developers in
the tasks of specifying, analysing and enforcing FACPL policies. Figure
1 shows the toolchain enabling the use of the language.

[image: ../_images/toolChain.png]
Developers can use the IDE, in the form of an
Eclipse [http://www.eclipse.org/] plugin, for specifying the desired
policies in FACPL syntax, by taking advantage of the supporting features
provided by the environment. The IDE automatically produces a set of
Java classes enforcing the FACPL policies and of
SMT-LIB [http://smtlib.cs.uiowa.edu/] files enabling the automatic
analysis of policies. The Java FACPL library provides the compile- and
run-time support for validating and enforcing the generated Java
policies in real systems. The use of the SMT-LIB code and of the
Z3 [https://github.com/Z3Prover] constraint solver offers effective
analysis means. Furthermore, the toolchain offers a (partial)
interoperability with the
XACML [https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml]
standard, commonly used to deploy real-world access control systems. See
Section 9.1 of this FACPL
paper [http://local.disia.unifi.it/wp_disia/2016/wp_disia_2016_05.pdf]
for further details on XACML vs. FACPL interoperability.

FACPL Evaluation Process

Policies control system resources by means of a particular evaluation
process, which relies on two main components: the Policy Decision
Point (PDP) and the Policy Enforcement Point (PEP). The former
calculates the authorization decision for an access request, and the
latter enforces such decision in the system. Figure 2 shows the FACPL
evaluation process.

[image: ../_images/evaluationProcess.png]
Each controlled resource is paired with one or more FACPL policies,
which define the access control rules expressing the credentials
necessary to gain access to the resource. These policies are stored
within the Policy Repository (PR) that makes them available to the PDP
(step 1), which has the task of deciding whether to grant access to
resources or not. The evaluation of a request is organized in the
following steps.

	A request to access a resource is received by the PEP (step 2) and it
is encoded as a FACPL request containing the credentials expressed as
attribute elements (step 3). An attribute is a pair (name, value)
representing a security-relevant information.

	The context handler sends the request to the PDP (step 4) and can add
environmental attributes to the request, as e.g. the request
receiving time, which may be needed for the evaluation process.

	The PDP computes the PDP response for the request by checking the
attributes, that may belong either to the request or to the context
(steps 5-8), against the controls contained in the policies. The PDP
response contains an authorization decision and, possibly, some
obligations.

	The PDP response is sent to the PEP, that, by appropriate obligation
services, must discharge all possibly present obligations (steps
9-11).

	On the basis of the result of obligations discharge, the PEP computes
the final decision (steps 12-13). This decision, that could differ
from the PDP one, is the overall outcome of the evaluation process.

Notably, obligations are additional actions connected to the access
control system and might correspond to, e.g., updating a log file,
sending a message, generating an event or executing an action.

Getting started

A set of FACPL examples are available in the GitHub repository together with the corresponding
Java-translated policies, in the code examples
repository [https://github.com/andreamargheri/FACPL/tree/master/EXAMPLES]. The binaries
and source code of the Java library and its unit tests can be downloaded
from the repository as well.

Eclipse installation

Note

The Eclipse plugin is provided by means of the Eclipse p2 repository (the current stable version is the 2.0.5). The repository is available in .zip format as part of the last release in GitHub here [https://github.com/andreamargheri/FACPL/releases].

By using the well-known
procedure “Install new software…” from the Eclipse’s toolbar menu, the
FACPL plugin can be easily installed. Note that it is required to accept
the Eclipse Public License in order to complete the installation. The
plugin installation requires:

	Eclipse for Java and DSL Developers version 4.* or higher version

	Xtext framework plugins

	Java 8

If the Xtext plugins are missing, they will be automatically added
through the standard Eclipse update site.

Note

The plugin has been successfully tested by using the Eclipse DSL Release Neon

Using the tool

When the installation of the plugin has completed, we can create a FACPL
project to start coding, analysing and evaluating FACPL policies. In the Usage guide, all the needed details.

Java Library

Basic examples of FACPL Java code is available in the Java code examples [https://github.com/andreamargheri/FACPL/tree/master/EXAMPLES/FACPL_JAVA_Examples].

Note

FACPL is not intended to be used directly from Java, but via its high-level syntax (whose IDE is available in the Eclipse plugin). Therefore, the way a policy is constructed is more friendly for an automated code generator than a programmer.

Library Structure

The high-level type structure of FACPL policy is

| IEvaluablePolicy
| ├── FacplPolicy
| │ ├── PolicySet
| │ └── Rule

FacplPolicy abstracts obligation and target field of the PolicySet and Rule. The corresponding type structure of the two fields are

| IObligationElement
| ├── Obligation

| ExpressionBooleanTree
| ├── ExpressionFunction

where the tree structure organises the functions with boolean operators. Comparison and arithmetics functions are organised with a Factory pattern according to the input types.

Therefore, PolicySet and Rule provide the abstract structure and the evaluation methods of the FACPL policy elements. Specifically, PolicySet includes the combining algorithm (whose specification is given by IEvaluableAlgorithm) and the list of enclosed elements (either PolicySet or Rule), while Rule contains the decision (viz. PERMIT or DENY).

Creating a FACPL policy

PolicySet and Rule are abstract classes, hence to create a FACPL policy is needed to extended the corresponding class and use the ‘setter’ methods to add the internal elements.

We report here some Java code from the examples [https://github.com/andreamargheri/FACPL/tree/master/EXAMPLES/].

Let’s start with a policy enclosing a single rule

public class PolicySet_pName extends PolicySet {
 public PolicySet_pName() {
 addId("pName");
 // Algorithm Combining
 addCombiningAlg(new it.unifi.facpl.lib.algorithm.PermitOverridesGreedy());
 // PolElements
 addPolicyElement(new Rule_rule1());
 }

 private class Rule_rule1 extends Rule {

 Rule_rule1() {
 addId("rule1");
 // Effect
 addEffect(Effect.PERMIT);
 }
 }
}

A more complex target can be added by using a tree structure with the following code

addTarget(new ExpressionBooleanTree(ExprBooleanConnector.AND,
 new ExpressionBooleanTree(new ExpressionFunction(new it.unifi.facpl.lib.function.comparison.Equal(),
 "John", new AttributeName("subject", "id"))),
 new ExpressionBooleanTree(new ExpressionFunction(new it.unifi.facpl.lib.function.comparison.In(),
 new AttributeName("action", "id"), new Set("read", "seek")))));

the corresponding target expression is equal(subject/id,"John") && in(action/id,{"read","seek"}).

To add obligations to either the rule of the policy, the following code has to be added

addObligation(new Obligation("compress", Effect.PERMIT, ObligationType.O, null));

According to the chosen obligation actions (in this case compress), a list of arguments can be inserted in place of null. By default, the available obligation actions is

	mailTo: to send an email to a given address and text

	log: to create a log file with a given text

	compress: to zip a given text

Here an example of a log obligation

addObligation(new Obligation("log", Effect.DENY, ObligationType.M, "Subject: ",
 new AttributeName("subject", "id"), new AttributeName("subject", "name")));

the use of AttributeName as obligation arguments allows to retrieve at the policy evaluation time the actual input for discharging the action.

Note

To add additional obligation action, just implement the interface IPepAction and provide the class with the corresponding name in the PEPAction class. Details below on its usage.

Evaluating a policy

The evaluation of FACPL Policy correspond to invoke the method evalute given an access request in input. The method is

public AuthorisationPDP evaluate(ContextRequest cxtRequest, Boolean extendedIndeterminate)

where extendedIndeterminate set to true means that the extended evaluation of the indeterminate values (see XACML semantics [http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html]).

An access request is defined by a list of attributes, grouped by category, and a link to a context stub that can be used to dynamically access to external information. A simple request is

public class ContextRequest_Name {

 private static ContextRequest CxtReq;

 public static ContextRequest getContextReq() {
 if (CxtReq != null) {
 return CxtReq;
 }
 // create map for each category
 HashMap<String, Object> req_action = new HashMap<String, Object>();
 req_action.put("id", "READ");

 Request req = new Request("Name");
 req.addAttribute("action", req_action);

 // context stub: default-one
 CxtReq = new ContextRequest(req, ContextStub_Default.getInstance());
 return CxtReq;
 }
}

which is formed by a single attribute named id and with category action; together represented as action/id.

The enforcement procedure is completed by the two key components PDP and PEP described in the Introduction. Their structure is defined in the library and can be instantiated as follows

this.pdp = new PDP(new it.unifi.facpl.lib.algorithm.PermitUnlessDenyGreedy(), policies, false);
this.pep = new PEP(EnforcementAlgorithm.DENY_BIASED);

where the PDP gets the combining algorithm to use (in this case PermitUnlessDenyGreedy for the evaluation of the list of policies; the last boolean sets the use of extendedIndeterminate. The PEP just requires the enforcement algorithm to use for discharging the obligations.

To add additional obligations to the PEP we can use

this.pep.addPEPActions(PEPAction.getPepActions());

where the template of the class PEPAction is defined as

public class PEPAction{

 public static HashMap<String, IPepAction> getPepActions() {
 /*
 * Set your own pep action e.g. HashMap<String,new ***** class Action extending IPepAction***()
 *
 * pepAction = new HashMap<String,IPepAction>();
 * pepAction.put("action", Action.class); return
 * pepAction;
 */
 return null;
 }

}

All together, the Eclipse plugin generates a MainFACPL.java file that create a main method for the evaluation of selected requests. Here an example

public class MainFACPL{

 private PDP pdp;
 private PEP pep;

 public MainFACPL() {
 // defined list of policies included in the PDP
 LinkedList<IEvaluablePolicy> policies = new LinkedList<IEvaluablePolicy>();
 policies.add(new PolicySet_PSet());
 this.pdp = new PDP(new it.unifi.facpl.lib.algorithm.PermitUnlessDenyGreedy(), policies, false);

 this.pep = new PEP(EnforcementAlgorithm.DENY_BIASED);

 this.pep.addPEPActions(PEPAction.getPepActions());
 }

 /*
 *ENTRY POINT FOR EVALUATION
 */
 public static void main(String[] args){
 //Initialise Authorisation System
 MainFACPL system = new MainFACPL();

 //log
 StringBuffer result = new StringBuffer();
 //request
 LinkedList<ContextRequest> requests = new LinkedList<ContextRequest>();
 requests.add(ContextRequest_Name.getContextReq());
 for (ContextRequest rcxt : requests) {
 result.append("---\n");
 AuthorisationPDP resPDP = system.pdp.doAuthorisation(rcxt);
 result.append("Request: "+ resPDP.getId() + "\n\n");
 result.append("PDP Decision=\n " + resPDP.toString()+"\n\n");
 //enforce decision
 AuthorisationPEP resPEP = system.pep.doEnforcement(resPDP);
 result.append("PEP Decision=\n " + resPEP.toString()+"\n");
 result.append("---\n");
 }
 System.out.println(result.toString());
 }

 public PDP getPdp() {
 return pdp;
 }

 public PEP getPep() {
 return pep;
 }

}

FACPL Java Code Generator and Parsers

FACPL polices can be generated starting from FACPL code (aka the one used in the Eclipse plugin), instead of directly using the Java library.

The (parser and) code generators are available standalone by the Eclipse plugin in the latest release [https://github.com/andreamargheri/FACPL/releases/tag/2.0.1]. This example project [https://github.com/andreamargheri/FACPL/tree/master/EXAMPLES/Generator] reports practical examples of the code generation, given a FACPL file, of Java, XACML and SMT_LIB code.

By way of example, given the following FACPL code

PolicySet patientConsent { permit-overrides
 target: equal ("Alice" , resource / patient-id)
 policies:
 PolicySet ePre { permit-overrides - all
 target:equal("e-Prescription",resource/type)
 policies:
 Rule writeDoc (permit target: equal (subject / role , "doctor")
 && equal (action / id , "write")
 && in ("e-Pre-Write" , subject / permission)
 && in ("e-Pre-Read" , subject / permission))
 Rule readDoc (permit target: equal (subject / role , "doctor")
 && equal (action / id , "read")
 && in ("e-Pre-Read", subject / permission))
 Rule readPha (permit target: equal (subject / role , "pharmacist")
 && equal (action / id , "read")
 && in ("e-Pre-Read" , subject / permission))
 obl-p:
 [M log (system / time , resource / type , subject / id , action / id)]
 }
 Rule denyRule (deny)
 obl-d:
 [M mailTo (resource / patient-id.mail , "Data requested by unauthorized subject")]
}

The code corresponding to the PolicySet ePre and parientConsent is generated.

Usage guide

Setting Up a FACPL Project

A FACPL project can be created from the project menu “File -> New
Project …”, where the customised wizard FACPL Development Project
is available. After choosing a project name, the wizard creates a new
Java Plugin-Development Project that contains all the required libraries
for the coding and evaluation tasks; note that the project name cannot
contain any blank space.

[image: ../_images/Facpl_Project.png]
The generated FACPL project is like the one reported in Figure 3. FACPL
files are generic text files having the “.fpl” extension and, for
practical convenience, are placed in the src-facpl folder; a policy
demo is added to the auto-generated project. The FACPL Java-translated
policies and requests are automatically placed in the src folder.
Instead, the src-xml folder contains the generated XML files and the
src-smtlib folder contains the generated SMT-LIB files.

A new FACPL file can be created either as a new generic file with
extension “.fpl” or by using the FACPL File wizard from the command
File -> New… in the menu. The wizard permits specifying the
container of the file (by selecting it from the projects available in
the workspace), the name of the file, and some basic code examples to
add to the new file.

Policy Specification

A FACPL file is composed of three different parts (for which the new
file wizard provides basic templates):

	Policy declarations: define the access control policies and the
algorithms used for calculating and enforcing authorisation
decisions.

	Request declarations: define the attributes values modeling an
access attempt. The requests will be evaluated with respect to the
available policies to obtain the corresponding authorisation
decisions.

	Main: defines the Policy Authorisation System (PAS), i.e. the PEP
and PDP, and some options for the generation of Java code and for
request evaluation. More details on this part are presented in
Plugin Commands and Facets.

An access control policy is hierarchically structured in terms of
rules and policy sets, where a rule is a basic element for
specifying access controls, while a policy set is a collection of other
policies.

A rule specifies a name, the positive or negative decision of its
successful evaluation (i.e., permit or deny), and a target expression
for checking the applicability with respect to a request.

A target is a boolean expression defining the conditions deciding if
the enclosed policy has to authorised an incoming request. The
expressions are formed by basic relational and arithmetic operators.
Such opertors define conditions on requests by means of attribute
name. The available operators and some special attribute names (e.g. to
get the current time) are provided by the auto-completion feature (e.g.,
for Mac/s users ⌘+Space) of the plugin. Attribute names are of the form
Identifier/Identifier, where the first identifier stands for a
category name and the second for an attribute name. For example, the
name action/action-id represents the value of the attribute
action-id within the category action. Notably, the plugin provides a
type inference system checking that the expressions are correctly typed.

A policy set specifies a name, the combining algorithm to be used
for combining the results of the contained policies, and a target
expression for defining its applicability. The available combining
algorithms are: permit-overrides, deny-overrides, permit-unless-deny,
deny-unless-permit, first-applicable, only-one-applicable,
weak-consensus and strong-consensus. The behaviour of each of them is
presented in Policy Evaluation. Each algorithm is
paired with a fulfilment strategy, i.e. all or greedy, leading its
evaluation (see below). In addition, if different behaviours are
requested, it is also possible to specialise the custom-algorithm.
Furthermore, the command include permits to add, by means of name
reference, a policy set to another one.

Each of the previous elements can also include a list of obligations. An
obligation specifies an effect, i.e. permit or deny, for the
applicability of the obligation, a type, i.e. M for Mandatory and O for
Optional, and the identifier of an action with its argument. These
arguments are generic expressions possibly containing attribute names,
while the set of action identifiers understood by the PEP can be chosen,
from time to time, according to the specific application.

The definition of the policy authorisation system (PAS), in addition to
the access control policies defining the PDP, defines the top-level
combining algorithm for the PDP (i.e., one among the algorithms already
mentioned) and the enforcement algorithm for the PEP (i.e., one among
base, permit-biased and deny-biased).

The following figure reports an example of policy declaration from an
e-Health case
study [http://facpl.sourceforge.net/eHealth/index.html].

[image: ../_images/FacplPolicy.png]
The policy manages all the requests for the management of the
e-Prescription service of the patient named ‘Alice’. The rules checks
the credentials exposed by the requester (i.e., the permission) and the
requested actions.

We briefly comment part of the reported policy. The policy named “ePre”
checks, by means of its target, if the requested service is
“e-Prescription”, then the internal rules check the exposed credentials
according to the requested actions. By way of example, the rule named
“writeDoc” authorises with permit (i.e., a positive authorisation) a
subject whose role is doctor (i.e., by using attribute subject/role)
and whose permissions contain both the permissions “e-Pre-Read” and
“e-Pre-Write”. Notably, the rules are evaluated in the same order as
they appear within the policy. Thus, since the chosen combining
algorithm is permit-overrides (see below), if the first rule evaluates
correctly (i.e. it returns permit) then the second rule is not
evaluated. Finally, the obligation log is used to record in the system
the authorised access. The other rules are similarly defined, as well as
the obligation mailTo.

[image: ../_images/FACPL_Request.png]
Figure 5 reports an example of FACPL request. Specifically, it
represents the “doctor” with id “Dr. House” and credentials “e-Pre-Read”
and “e-Pre-Write”, willing to “write” an “e-Prescription” for the
patient with id “Alice”. This request is authorised to permit by the
previous policy.

Policy Evaluation

The evaluation of a request with respect to a policy generates one among
the following authorization decisions:

	permit: the request is granted;

	deny: the request is not granted;

	not-applicable: there is no policy that applies to the request;

	indeterminate: some errors occurred in the evaluation.

When the resulting authorisation decision is permit or deny some
obligations can possibly be present.

The evaluation of a policy with respect to a request starts by
checking its applicability to the request, which is done by evaluating
the expression defining its target. Evaluating expressions amounts to
apply operators and to resolve the attribute names occurring within,
that is to determine the value corresponding to each such name. If this
is not possible, i.e. an attribute with that name is missing in the
request and cannot be retrieved through the context handler, the special
value ⊥ is returned. This value can be explicitly managed by the various
operators. The evaluation of a policy has indeed the following cases:

	Let us suppose that the applicability holds, i.e. the expression
evaluates to true. In case of rules, the rule effect is returned.
In case of policy sets, the result is obtained by evaluating the
contained policies and combining their evaluation results through the
specified algorithm. In both cases, the evaluation ends with the
fulfilment of the enclosed obligations.

	Let us suppose now that the applicability does not hold. If the
expression evaluates to false or ⊥, the policy evaluation returns
not-applicable, while if the expression returns an error or a
non-boolean value, the policy evaluation returns indeterminate.

Clearly, a policy with target expression true (resp., false) applies to
all (resp., no) requests. The evaluation process of rules and policy
sets is summarised, respectively, in Tables 1 and 2.

	Target

	Obligation

	Rule Result

	true

	fulfilled

	rule effect + FO

	true

	fulfilment error

	indeterminate

	false or ⊥

	
	

	not-applicable

	error or non-boolean value

	-

	indeterminate

Table 1. Rule evaluation (where FO stands for ‘fulfilled obligations’)

	Target

	Combining Algorithm

	Obligation

	Policy Set Result

	true

	permit (resp., deny)

	fulfilled

	permit (resp., deny) + FO

	true

	not-applicable

	
	

	not-applicable

	true

	indeterminate

	
	

	indeterminate

	true

	permit (resp., deny)

	fulfilment error

	indeterminate

	false or ⊥

	
	

	
	

	not-applicable

	error or non-boolean value

	-

	
	

	indeterminate

Table 2. Policy set evaluation (where FO stands for ‘fulfilled
obligations’)

Concerning the evaluation of expressions, it takes into account the
types of the operators arguments, and possibly returns the special value
⊥ and error. In details, if the arguments are of the expected type,
the operator is applied, else, i.e. at least one argument is error,
error is returned; otherwise, i.e. at least one argument is ⊥ and none
is error, ⊥ is returned. The expression operators and and or enforce
a different treatment of these special values. Specifically, and
returns true if both operands are true, false if at least one
operand is false, ⊥ if at least one operand is ⊥ and none is false
or error, and error otherwise (e.g. when an operand is not a boolean
value). The operator or is the dual of and. Hence, and and or may mask
⊥ and error. Instead, the unary operator not only swaps values
true and false and leaves ⊥ and error unchanged. The other
expression operators have the expected semantics (e.g., operator equal
checks if the arguments are equal) and enforce the management strategy
for the special values ⊥ and error possibly resulting from the
evaluation of their arguments. Indeed, they establish that error takes
precedence over ⊥ and is returned every time the operator arguments have
unexpected types; whereas ⊥ is returned when at least an argument is ⊥
and there is no error.

The evaluation of a policy includes the fulfilment of the enclosed
obligations whose applicability effect coincides with the decision
calculated for the policy. The fulfilment of an obligation consists in
evaluating all the expression arguments of the enclosed action. If an
error occurs, the policy decision is changed to indet. Otherwise, the
fulfilled obligations are paired with the policy decision to form the
PDP response.

The behaviour of the combining algorithms available in the plugin is
as follows:

	deny-overrides (specular to permit-overrides): if the
processing of a policy returns deny, then the result is deny. In
other words, deny takes precedence, regardless of the result of
processing any other policy. Instead, if at least a policy returns
permit and all others return not-applicable or permit, then the
result is permit. If all policies return not-applicable, then the
result is not-applicable. In the remaining cases, the result is
indeterminate.

	deny-unless-permit (specular to permit-unless-deny): this
algorithm gives precedence to permit over deny, but never returns
not-applicable or indeterminate because, if a request is not
evaluated as permit, then it is evaluated as deny.

	first-applicable: in this case, the combined result is the same
as the result of processing the first policy in the sequence of
policies whose target is applicable to the request, if such result is
either permit, deny or indeterminate. If all policies return
not-applicable, then the result is not-applicable.

	only-one-applicable: this algorithm ensures that one and only one
policy is applicable by virtue of its target. If no policy applies,
the algorithm returns not-applicable, while if more than one policy
is applicable, it returns indeterminate. When exactly one policy is
applicable, the result of the algorithm is that of the applicable
policy.

	weak-consensus: this algorithm returns permit (resp., deny)
if some policies return permit (resp., deny) and no other policy
returns deny (resp., permit); if both decisions are returned by
different policies in the sequence, the algorithm returns
indeterminate. If only not-applicable and indeterminate decisions
are returned, indeterminate takes precedence. When all policies
return not-applicable then the result is not-applicable.

	strong-consensus: this algorithm is the stronger version of the
previous one, in the sense that to obtain permit (resp., deny)
all policies have to return permit (resp., deny), otherwise
indeterminate is returned. If all policies return not-applicable
then the result is not-applicable.

Each algorithm is paired with a fulfilment strategy, i.e. one
between all and greedy.

	The all strategy requires evaluation of all the occurring policies
and returns the fulfilled obligations pertaining to all decisions.

	The greedy strategy prescribes that, as soon as a decision is
obtained that cannot change due to evaluation of subsequent policies
in the input sequence, the execution halts. Hence, the result will
not consider the possibly remaining policies and only contains the
obligations already fulfilled. Therefore, the fulfilment strategies
mainly affect the amount of fulfilled obligations possibly returned.

The greedy strategy may significantly improve the evaluation performance
of a sequence of several policies.

Finally, the custom-algorithm doesn’t implement any behaviour; when
the Java code is generated, it only returns a “template” for
implementing a customised combining algorithm.

The authorisation decision resulting from the PDP evaluation is then
enforced by means of the chosen enforcement algorithm according to the
results of the execution of obligations. The behaviour of each
enforcement algorithm is as follows:

	base: it allows (resp. forbids) access only if the decision is
permit (resp. deny) and all obligations are successfully discharged,
otherwise it enforces indeterminate;

	deny-biased: if the decision is permit and all obligations are
successfully discharged, the access is granted, otherwise it is
forbidden;

	permit-biased: if the decision is deny and all obligations are
successfully discharged, the access is forbidden, otherwise it is
granted.

Notably, errors possibly occurring while discharging optional
obligations are ignored, so that they do not affect the enforcement
process.

Policy Analysis

To analyse FACPL policies, it is used an approach based on constraints.
The automatic verification of such constraints is obtained through an
SMT solver, like, e.g., Z3 [https://github.com/Z3Prover]. For
additional details on how such constraints are generated see this FACPL
paper [http://local.disia.unifi.it/wp_disia/2016/wp_disia_2016_05.pdf]
The type of properties we can check on policies by means of such
constraints are:

	Authorisation Properties These properties permit to statically
reason on the result of the evaluation of a policy with respect to a
specific request. Additionally, the properties MAY and MUST permit
also to take into account the role of additional attributes that
can be possibly introduced in the request at run-time and that might
lead to unexpected authorisations. The properties are

	EVAL: check if a policy evaluates a request to a certain
decision.

	MAY: check if a policy evaluates a request and ANY of its
possible extensions (i.e., where additional attributes are
present) to a certain decision.

	MUST: check if a policy evaluates a request and ALL its possible
extensions (i.e., where additional attributes are present) to a
certain decision.

	Structural Properties These properties permit to statically
reason on the whole set of authorisations enforced by one or more
policies. The properties are

	COMPLETE: a policy is complete if it applies to all requests,
i.e. it does not return not-applicable

	DISJOINT: two policies are disjoint if there is no request for
which both policies evaluate to permit or deny

	COVER: a policy p covers a policy p’ if the for each request
for which p’ evaluates to permit or deny, the policy p
evaluates such requests to the same decision.

Plugin Commands and Facets

The FACPL plugin offers many facets to support policy development, from
the organisation of code to commands for generating Java and XML code.

Navigation and formatting. The multi-page editor highlights FACPL
keywords and policies’ structure defining various formatting layouts for
policy elements (i.e., combining algorithms, keywords, effects, and
literals), and an auto-indentation command for FACPL code. The latter
command can be invoked by using the classical Eclipse shortcut
⌘+Shift+F (or Ctrl+Shift+F for Window’s users). Furthermore, the
structure of policies can be also navigated by means of the Outline
View specifically designed for FACPL specifications.

Scope and Import. The scope of a file is the set of requests and
policies defined inside the file. The scope is used to check the
references of requests and policies in the Eval Request option and in
the include command, respectively.

The plugin allows the developers to split the code in different modules
and, by using import commands, to create cross-file scope for policies
and requests. The import is defined as the command import
‘name_file.fpl’ and can access all the FACPL files in the current
folder. Therefore, the scope of the file where the import is defined is
extended with the scope of the imported files. Specifically, all
requests and policies defined in the imported file are also visible in
the current file.

Name checks. For policies and policy sets it is ensured the
uniqueness of names. This check is performed among policy items together
with policy set ones, because both of them can be used in an include
command. Moreover, when an import command is present, the name check
verifies uniqueness of local items with respect to the imported ones.

Generation parameters. The meaning of the attributes defined in the
Main Attributes section of the FACPL code is as follows:

	Combined Decision (optional): if multiple requests have to be
evaluated, we can require that only one combined decision will be
returned.

	Extended Indeterminate: it activates an additional features for the
management of indeterminate; we advice to put this option to false.

	Java Package: it specifies the Java package where the generated
Java-translated policies and requests will be placed (if empty, it is
assigned the default Java package).

	Requests To Evaluate: it defines the name of the requests to
evaluate (each request name must be visible within the file scope).

When these options are properly selected, the generation of Java code
defines, in the PEP Java class, the main method for running requests’
evaluation.

Generation of Java Code. To generate the corresponding Java code of
a FACPL specification, the IDE provides the command Generate Java Code
from FACPL in the pop-up menu (right click in the editor or on the
specific file in the package explorer view) and in the FACPL toolbar
menu. The resulting Java classes will be included in the package defined
in the main attributes. If there are one or more imported files, the
generation command is recursively executed on those FACPL files.

Generation of XACML (XML) policies. From the FACPL code it is also
possible to generate the corresponding XACML files written as XML code.
The command Generate XACML Code from FACPL in the pop-up menu or in
the FACPL toolbar menu generates the corresponding XML files into the
src-xml folder.

Generation of SMT-LIB. From the FACPL code it is also possible to
generate the corresponding SMT-LIB code. The command Generate SMT-LIB
Code from FACPL in the pop-up menu or in the FACPL toolbar menu
generates the corresponding SMT-LIB file into the src-smtlib folder.
This file can then pass as input to an SMT solver like, e.g.,
Z3 [https://github.com/Z3Prover].

Policy Analysis. The menu commands Create Authorisation
Property… and Create Structural Property… provide a guided
interface to create the SMT-LIB file needed to check the satisfiability
of the chosen authorisation and structural property, respectively.

FAQ

	Which additional action are available for FACPL obligations? The
PEP implementation provides by default log and mailTo actions.
Other actions can be easily defined by using the Java class
PEPAction that results from the generation of Java code.

	May I code with FACPL directly in Java? Yes, the Java libraries
can be found on the web-site and they can be easily added as
additional reference libraries to a Java project.

	How can I update the Eclipse plugin? The Eclipse plugin can be
automatically updated (if a new version will be available) by using
the Eclipse command Check for Updates.

Index

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/evaluationProcess.png
*

13. decision
'

11. obligations Obligation

Requester 2. request

services

12. obligation results

PR 3. FACPL request

1. FACPL policies 10. PDP response

[¢—— 4.FACPLrequest —

5. attribute names ——| 6. attribute names —|

Context

PDP
[«——8. attribute values ——— Handler

7. attribute values

9. PDP response ———|

_images/toolChain.png
N FACPL Policies FACPL Library

XACML P24
Policiﬁ Xtext | _L .
</> <<uses>>1‘ <<generates>> -— <<uses>> h=d
xuL | SSgenerates>>. — A2 ---->
—_— = L
XACML javA - JAR
3 - = N
' FACPL CODE “ <<generates>> <
<<interacts>> - . —_—
| +— - XML L
Policy :
Developer e <<generates>> <code > <<uses>>
—>swmTuB TTTTY | o,

FACPL IDE
FACPL Constraints

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to FACPL’s documentation!

 		
 FACPL at a glance

 		
 FACPL Evaluation Process

 		
 Getting started

 		
 Eclipse installation

 		
 Using the tool

 		
 Java Library

 		
 Library Structure

 		
 Creating a FACPL policy

 		
 Evaluating a policy

 		
 FACPL Java Code Generator and Parsers

 		
 Usage guide

 		
 Setting Up a FACPL Project

 		
 Policy Specification

 		
 Policy Evaluation

 		
 Policy Analysis

 		
 Plugin Commands and Facets

 		
 FAQ

_images/FacplPolicy.png
PolicySet patientConsent {permit-overrides
target: equal("ALice" resource/patient-id) policies:
PolicySet ePre { permit-overrides
target: equal("e-Prescription’ resource/type)
policies:
Rule readDocPre (pernit target: equal("doctor”, subject/role) 8&
equal("read” action/id)
8 in("e-Pre’Read", subject/permission))

0bL-p: [M log(systen/tine,resource/type, subject/id,action/id)]
3
PolicySet ebis { permit-overrides
target: equal("e-Dispensation" resource/type)
policies:
Rule readPhabis (pernit target: equal(’pharnacist”,subject/role) 84
equal("read” action/id)
8 in("e-Dis-Read", subject/permission))
obL-p: M Log(systen/tine, resource/type, subject/id,action/id)]
3
Rule rule_deny (deny)

0bL-p: [0 compress()] §
obL-d: M mai1To(resource/patient-id.nail, "Data requested by unauthorized subject”>]

_images/Facpl_Project.png
¥ 15 FACPL-Demo
v (B racpProjoct
Bere
@ srexmi
» BAJRE Systom Lirary [1avaSE-1.7]
» i Plug-in Dependencies
> = META-INF
¥ o sro-acpl
¥ & example
7 FACPLIpI
i buid propertes

_images/FACPL_Request.png
tequest:{ Requestl
(subject/id, "Dr.. House")
(resource/patient-id, "Alice")
(resource/type, "e-Prescription”)
(subject/role, "doctor™
(subject/permission, e
(action/id, "write")

3

Access!

~Create")

